Parallelize multiple http GET requests

Added ThreadPoolExecutor and used to process GET requests in multiple
threads which enables chunks of data to always be available for
processing. Processing of the data can happen as soon as the first chunk
arrives.

Refactored the code to help implement. The idea is the "params" are
built in batch and passed to the thread pool which get the actual
results.
This commit is contained in:
Chuddah 2020-02-19 22:18:54 +00:00
parent 5fc60fce6b
commit 302880f67a
2 changed files with 28 additions and 9 deletions

View file

@ -10,6 +10,7 @@
<import addon="script.module.six" /> <import addon="script.module.six" />
<import addon="script.module.kodi-six" /> <import addon="script.module.kodi-six" />
<import addon="script.module.addon.signals" version="0.0.1"/> <import addon="script.module.addon.signals" version="0.0.1"/>
<import addon="script.module.futures" version="2.2.0"/>
</requires> </requires>
<extension point="xbmc.python.pluginsource" <extension point="xbmc.python.pluginsource"
library="default.py"> library="default.py">

View file

@ -19,6 +19,7 @@ from jellyfin.exceptions import HTTPException
LOG = logging.getLogger("JELLYFIN." + __name__) LOG = logging.getLogger("JELLYFIN." + __name__)
LIMIT = min(int(settings('limitIndex') or 50), 50) LIMIT = min(int(settings('limitIndex') or 50), 50)
DTHREADS = int(settings('limitThreads') or 3)
################################################################################################# #################################################################################################
@ -243,7 +244,8 @@ def _get_items(query, server_id=None):
} }
url = query['url'] url = query['url']
params = query.get('params', {}) query.setdefault('params', {})
params = query['params']
try: try:
test_params = dict(params) test_params = dict(params)
@ -256,21 +258,37 @@ def _get_items(query, server_id=None):
LOG.exception("Failed to retrieve the server response %s: %s params:%s", url, error, params) LOG.exception("Failed to retrieve the server response %s: %s params:%s", url, error, params)
else: else:
index = params.get('StartIndex', 0) params.setdefault('StartIndex', 0)
total = items['TotalRecordCount']
while index < total: def get_query_params(params, start, count):
params_copy = dict(params)
params_copy['StartIndex'] = start
params_copy['Limit'] = count
return params_copy
params['StartIndex'] = index query_params = [get_query_params(params, offset, LIMIT) \
params['Limit'] = LIMIT for offset in xrange(params['StartIndex'], items['TotalRecordCount'], LIMIT)]
result = _get(url, params, server_id=server_id) or {'Items': []}
from itertools import izip
# multiprocessing.dummy.Pool completes all requests in multiple threads but has to
# complete all tasks before allowing any results to be processed. ThreadPoolExecutor
# allows for completed tasks to be processed while other tasks are completed on other
# threads. Dont be a dummy.Pool, be a ThreadPoolExecutor
import concurrent.futures
p = concurrent.futures.ThreadPoolExecutor(DTHREADS)
results = p.map(lambda params: _get(url, params, server_id=server_id), query_params)
for params, result in izip(query_params, results):
query['params'] = params
result = result or {'Items': []}
items['Items'].extend(result['Items']) items['Items'].extend(result['Items'])
# Using items to return data and communicate a restore point back to the callee is
# a violation of the SRP. TODO: Seperate responsibilities.
items['RestorePoint'] = query items['RestorePoint'] = query
yield items yield items
del items['Items'][:] del items['Items'][:]
index += LIMIT
class GetItemWorker(threading.Thread): class GetItemWorker(threading.Thread):