ConsistentlyInconsistentYT-.../process_image.cpp
2025-08-29 12:30:55 +02:00

902 lines
32 KiB
C++

// process_image.cpp
#include <pybind11/pybind11.h>
#include <pybind11/numpy.h>
#include <pybind11/stl.h>
#include <cmath>
#include <vector>
#include <array>
#include <algorithm>
#include <limits>
#include <iostream>
#include <fstream>
#include <map>
#include <string>
#include "nlohmann/json.hpp"
#define STB_IMAGE_IMPLEMENTATION
#include "stb_image.h"
#ifndef M_PI
#define M_PI 3.14159265358979323846
#endif
namespace py = pybind11;
// For convenience
using json = nlohmann::json;
//----------------------------------------------
// 1) Data Structures
//----------------------------------------------
struct Vec3 {
float x, y, z;
};
struct Mat3 {
float m[9];
};
struct FrameInfo {
int camera_index;
int frame_index;
Vec3 camera_position;
float yaw, pitch, roll;
float fov_degrees;
std::string image_file;
// Optionally we store object_name, object_location if needed
};
//----------------------------------------------
// 2) Basic Math Helpers
//----------------------------------------------
static inline float deg2rad(float deg) {
return deg * 3.14159265358979323846f / 180.0f;
}
static inline Vec3 normalize(const Vec3 &v) {
float len = std::sqrt(v.x*v.x + v.y*v.y + v.z*v.z);
if(len < 1e-12f) {
return {0.f, 0.f, 0.f};
}
return { v.x/len, v.y/len, v.z/len };
}
// Multiply 3x3 matrix by Vec3
static inline Vec3 mat3_mul_vec3(const Mat3 &M, const Vec3 &v) {
Vec3 r;
r.x = M.m[0]*v.x + M.m[1]*v.y + M.m[2]*v.z;
r.y = M.m[3]*v.x + M.m[4]*v.y + M.m[5]*v.z;
r.z = M.m[6]*v.x + M.m[7]*v.y + M.m[8]*v.z;
return r;
}
//----------------------------------------------
// 3) Euler -> Rotation Matrix
//----------------------------------------------
Mat3 rotation_matrix_yaw_pitch_roll(float yaw_deg, float pitch_deg, float roll_deg) {
float y = deg2rad(yaw_deg);
float p = deg2rad(pitch_deg);
float r = deg2rad(roll_deg);
// Build each sub-rotation
// Rz(yaw)
float cy = std::cos(y), sy = std::sin(y);
float Rz[9] = {
cy, -sy, 0.f,
sy, cy, 0.f,
0.f, 0.f, 1.f
};
// Ry(roll)
float cr = std::cos(r), sr = std::sin(r);
float Ry[9] = {
cr, 0.f, sr,
0.f, 1.f, 0.f,
-sr, 0.f, cr
};
// Rx(pitch)
float cp = std::cos(p), sp = std::sin(p);
float Rx[9] = {
1.f, 0.f, 0.f,
0.f, cp, -sp,
0.f, sp, cp
};
// Helper to multiply 3x3
auto matmul3x3 = [&](const float A[9], const float B[9], float C[9]){
for(int row=0; row<3; ++row) {
for(int col=0; col<3; ++col) {
C[row*3+col] =
A[row*3+0]*B[0*3+col] +
A[row*3+1]*B[1*3+col] +
A[row*3+2]*B[2*3+col];
}
}
};
float Rtemp[9], Rfinal[9];
matmul3x3(Rz, Ry, Rtemp); // Rz * Ry
matmul3x3(Rtemp, Rx, Rfinal); // (Rz*Ry)*Rx
Mat3 out;
for(int i=0; i<9; i++){
out.m[i] = Rfinal[i];
}
return out;
}
//----------------------------------------------
// 4) Load JSON Metadata
//----------------------------------------------
std::vector<FrameInfo> load_metadata(const std::string &json_path) {
std::vector<FrameInfo> frames;
std::ifstream ifs(json_path);
if(!ifs.is_open()){
std::cerr << "ERROR: Cannot open " << json_path << std::endl;
return frames;
}
json j;
ifs >> j;
if(!j.is_array()){
std::cerr << "ERROR: JSON top level is not an array.\n";
return frames;
}
for(const auto &entry : j) {
FrameInfo fi;
fi.camera_index = entry.value("camera_index", 0);
fi.frame_index = entry.value("frame_index", 0);
fi.yaw = entry.value("yaw", 0.f);
fi.pitch = entry.value("pitch", 0.f);
fi.roll = entry.value("roll", 0.f);
fi.fov_degrees = entry.value("fov_degrees", 60.f);
fi.image_file = entry.value("image_file", "");
// camera_position array
if(entry.contains("camera_position") && entry["camera_position"].is_array()){
auto arr = entry["camera_position"];
if(arr.size()>=3){
fi.camera_position.x = arr[0].get<float>();
fi.camera_position.y = arr[1].get<float>();
fi.camera_position.z = arr[2].get<float>();
}
}
frames.push_back(fi);
}
return frames;
}
//----------------------------------------------
// 5) Image Loading (Gray) & Motion Detection
//----------------------------------------------
struct ImageGray {
int width;
int height;
std::vector<float> pixels; // grayscale float
};
#include <random> // for std::mt19937, std::uniform_real_distribution
// Load image in grayscale (0-255 float) and add uniform noise.
bool load_image_gray(const std::string &img_path, ImageGray &out) {
int w, h, channels;
// stbi_load returns 8-bit data by default
unsigned char* data = stbi_load(img_path.c_str(), &w, &h, &channels, 1);
if (!data) {
std::cerr << "Failed to load image: " << img_path << std::endl;
return false;
}
out.width = w;
out.height = h;
out.pixels.resize(w * h);
// Prepare random noise generator
static std::random_device rd;
static std::mt19937 gen(rd());
// Noise in [-3, +3]
std::uniform_real_distribution<float> noise_dist(-1.0f, 1.0f);
// Copy pixels and add noise
for (int i = 0; i < w * h; i++) {
float val = static_cast<float>(data[i]); // 0..255
// Add uniform noise
val += noise_dist(gen);
// Clamp to [0, 255]
if (val < 0.0f) val = 0.0f;
if (val > 255.0f) val = 255.0f;
// Store in out.pixels
out.pixels[i] = val;
}
stbi_image_free(data);
return true;
}
// Detect motion by absolute difference
// Returns a boolean mask + the difference for each pixel
struct MotionMask {
int width;
int height;
std::vector<bool> changed;
std::vector<float> diff; // absolute difference
};
MotionMask detect_motion(const ImageGray &prev, const ImageGray &next, float threshold) {
MotionMask mm;
if(prev.width != next.width || prev.height != next.height) {
std::cerr << "Images differ in size. Can\'t do motion detection!\n";
mm.width = 0;
mm.height = 0;
return mm;
}
mm.width = prev.width;
mm.height = prev.height;
mm.changed.resize(mm.width * mm.height, false);
mm.diff.resize(mm.width * mm.height, 0.f);
for(int i=0; i < mm.width*mm.height; i++){
float d = std::fabs(prev.pixels[i] - next.pixels[i]);
mm.diff[i] = d;
mm.changed[i] = (d > threshold);
}
return mm;
}
bool ray_aabb_intersection(const Vec3& ray_origin, const Vec3& ray_direction, const Vec3& aabb_min, const Vec3& aabb_max, float& t_entry, float& t_exit) {
Vec3 inv_direction = {1.0f / ray_direction.x, 1.0f / ray_direction.y, 1.0f / ray_direction.z};
Vec3 tmin = {(aabb_min.x - ray_origin.x) * inv_direction.x,
(aabb_min.y - ray_origin.y) * inv_direction.y,
(aabb_min.z - ray_origin.z) * inv_direction.z};
Vec3 tmax = {(aabb_max.x - ray_origin.x) * inv_direction.x,
(aabb_max.y - ray_origin.y) * inv_direction.y,
(aabb_max.z - ray_origin.z) * inv_direction.z};
Vec3 t1 = {std::min(tmin.x, tmax.x), std::min(tmin.y, tmax.y), std::min(tmin.z, tmax.z)};
Vec3 t2 = {std::max(tmin.x, tmax.x), std::max(tmin.y, tmax.y), std::max(tmin.z, tmax.z)};
float t_near = std::max(std::max(t1.x, t1.y), t1.z);
float t_far = std::min(std::min(t2.x, t2.y), t2.z);
if (t_near > t_far || t_far < 0.0f) {
return false;
}
t_entry = t_near;
t_exit = t_far;
return true;
}
/**
* Convert a 3D point to voxel indices within the voxel grid.
*
* Given a point in space and the voxel grid extents, compute which voxel it falls into.
*/
std::tuple<pybind11::ssize_t, pybind11::ssize_t, pybind11::ssize_t> point_to_voxel_indices(
const std::array<double, 3>& point,
const std::vector<std::pair<double, double>>& voxel_grid_extent,
const std::array<pybind11::ssize_t, 3>& voxel_grid_size)
{
double x_min = voxel_grid_extent[0].first;
double x_max = voxel_grid_extent[0].second;
double y_min = voxel_grid_extent[1].first;
double y_max = voxel_grid_extent[1].second;
double z_min = voxel_grid_extent[2].first;
double z_max = voxel_grid_extent[2].second;
double x = point[0];
double y = point[1];
double z = point[2];
// Check if the point is inside the voxel grid bounds
if (x_min <= x && x <= x_max && y_min <= y && y <= y_max && z_min <= z && z <= z_max)
{
pybind11::ssize_t nx = voxel_grid_size[0];
pybind11::ssize_t ny = voxel_grid_size[1];
pybind11::ssize_t nz = voxel_grid_size[2];
// Compute normalized position within the grid
double x_norm = (x - x_min) / (x_max - x_min);
double y_norm = (y - y_min) / (y_max - y_min);
double z_norm = (z - z_min) / (z_max - z_min);
// Convert normalized coordinates to voxel indices
pybind11::ssize_t x_idx = static_cast<pybind11::ssize_t>(x_norm * nx);
pybind11::ssize_t y_idx = static_cast<pybind11::ssize_t>(y_norm * ny);
pybind11::ssize_t z_idx = static_cast<pybind11::ssize_t>(z_norm * nz);
// Clamp the indices to valid range
x_idx = std::min(std::max(x_idx, pybind11::ssize_t(0)), nx - 1);
y_idx = std::min(std::max(y_idx, pybind11::ssize_t(0)), ny - 1);
z_idx = std::min(std::max(z_idx, pybind11::ssize_t(0)), nz - 1);
return std::make_tuple(x_idx, y_idx, z_idx);
}
else
{
// The point is outside the voxel grid
return std::make_tuple(-1, -1, -1);
}
}
/**
* Process an image and update the voxel grid and celestial sphere texture.
*
* This function:
* 1. Computes the direction of each pixel in the image.
* 2. Maps that direction to RA/Dec to find the corresponding brightness on the celestial sphere.
* 3. Optionally subtracts the background (celestial sphere brightness) from the image brightness.
* 4. If updating the celestial sphere, accumulates brightness values into the celestial_sphere_texture.
* 5. If a voxel grid is provided, casts rays into the grid and updates voxel brightness accordingly.
*/
void process_image_cpp(
py::array_t<double> image,
std::array<double, 3> earth_position,
std::array<double, 3> pointing_direction,
double fov,
pybind11::ssize_t image_width,
pybind11::ssize_t image_height,
py::array_t<double> voxel_grid,
std::vector<std::pair<double, double>> voxel_grid_extent,
double max_distance,
int num_steps,
py::array_t<double> celestial_sphere_texture,
double center_ra_rad,
double center_dec_rad,
double angular_width_rad,
double angular_height_rad,
bool update_celestial_sphere,
bool perform_background_subtraction
)
{
// Access the image and celestial sphere texture arrays
auto image_unchecked = image.unchecked<2>();
auto texture_mutable = celestial_sphere_texture.mutable_unchecked<2>();
pybind11::ssize_t texture_height = celestial_sphere_texture.shape(0);
pybind11::ssize_t texture_width = celestial_sphere_texture.shape(1);
// Check if voxel_grid is provided and non-empty
bool voxel_grid_provided = voxel_grid && voxel_grid.size() > 0;
// Variables for voxel grid (only if voxel_grid_provided)
std::array<pybind11::ssize_t, 3> voxel_grid_size = {0, 0, 0};
double x_min = 0, x_max = 0;
double y_min = 0, y_max = 0;
double z_min = 0, z_max = 0;
// We only declare voxel_grid_mutable inside the if block if voxel_grid is provided
// This avoids the need for a default constructor for unchecked_mutable_reference.
py::detail::unchecked_mutable_reference<double, 3>* voxel_grid_mutable_ptr = nullptr;
if (voxel_grid_provided)
{
// Get a mutable reference to the voxel grid
auto voxel_grid_mutable = voxel_grid.mutable_unchecked<3>();
voxel_grid_mutable_ptr = &voxel_grid_mutable;
// Extract voxel grid dimensions and extents
voxel_grid_size = {
voxel_grid.shape(0),
voxel_grid.shape(1),
voxel_grid.shape(2)
};
x_min = voxel_grid_extent[0].first;
x_max = voxel_grid_extent[0].second;
y_min = voxel_grid_extent[1].first;
y_max = voxel_grid_extent[1].second;
z_min = voxel_grid_extent[2].first;
z_max = voxel_grid_extent[2].second;
}
// Compute focal length from the field of view
double focal_length = (image_width / 2.0) / std::tan(fov / 2.0);
// Principal point (optical center)
double cx = image_width / 2.0;
double cy = image_height / 2.0;
// pointing_direction is the z-axis of the camera frame
// Normalize pointing_direction to ensure it's a unit vector
double z_norm = std::sqrt(pointing_direction[0]*pointing_direction[0] +
pointing_direction[1]*pointing_direction[1] +
pointing_direction[2]*pointing_direction[2]);
pointing_direction[0] /= z_norm;
pointing_direction[1] /= z_norm;
pointing_direction[2] /= z_norm;
// Define an 'up' vector to avoid singularities
std::array<double, 3> up = {0.0, 0.0, 1.0};
if ((std::abs(pointing_direction[0] - up[0]) < 1e-8 &&
std::abs(pointing_direction[1] - up[1]) < 1e-8 &&
std::abs(pointing_direction[2] - up[2]) < 1e-8) ||
(std::abs(pointing_direction[0] + up[0]) < 1e-8 &&
std::abs(pointing_direction[1] + up[1]) < 1e-8 &&
std::abs(pointing_direction[2] + up[2]) < 1e-8))
{
up = {0.0, 1.0, 0.0};
}
// Compute orthonormal basis: x_axis, y_axis, z_axis (z_axis = pointing_direction)
std::array<double, 3> z_axis = pointing_direction;
std::array<double, 3> x_axis;
x_axis[0] = up[1]*z_axis[2] - up[2]*z_axis[1];
x_axis[1] = up[2]*z_axis[0] - up[0]*z_axis[2];
x_axis[2] = up[0]*z_axis[1] - up[1]*z_axis[0];
double x_norm = std::sqrt(x_axis[0]*x_axis[0] + x_axis[1]*x_axis[1] + x_axis[2]*x_axis[2]);
x_axis[0] /= x_norm;
x_axis[1] /= x_norm;
x_axis[2] /= x_norm;
std::array<double, 3> y_axis;
y_axis[0] = z_axis[1]*x_axis[2] - z_axis[2]*x_axis[1];
y_axis[1] = z_axis[2]*x_axis[0] - z_axis[0]*x_axis[2];
y_axis[2] = z_axis[0]*x_axis[1] - z_axis[1]*x_axis[0];
// Iterate over each pixel in the image
#pragma omp parallel for
for (pybind11::ssize_t i = 0; i < image_height; ++i)
{
for (pybind11::ssize_t j = 0; j < image_width; ++j)
{
double brightness = image_unchecked(i, j);
if (brightness > 0)
{
// Compute the direction in camera coordinates
double x_cam = (j - cx);
double y_cam = (i - cy);
double z_cam = focal_length;
double norm = std::sqrt(x_cam*x_cam + y_cam*y_cam + z_cam*z_cam);
double direction_camera[3] = { x_cam/norm, y_cam/norm, z_cam/norm };
// Transform direction_camera to world coordinates
double direction_world[3];
direction_world[0] = x_axis[0]*direction_camera[0] + y_axis[0]*direction_camera[1] + z_axis[0]*direction_camera[2];
direction_world[1] = x_axis[1]*direction_camera[0] + y_axis[1]*direction_camera[1] + z_axis[1]*direction_camera[2];
direction_world[2] = x_axis[2]*direction_camera[0] + y_axis[2]*direction_camera[1] + z_axis[2]*direction_camera[2];
// Normalize direction_world (should already be unit, but just in case)
double dir_norm = std::sqrt(direction_world[0]*direction_world[0] +
direction_world[1]*direction_world[1] +
direction_world[2]*direction_world[2]);
direction_world[0] /= dir_norm;
direction_world[1] /= dir_norm;
direction_world[2] /= dir_norm;
// Compute RA/Dec for direction_world
double dx = direction_world[0];
double dy = direction_world[1];
double dz = direction_world[2];
double r = std::sqrt(dx*dx + dy*dy + dz*dz);
double dec = std::asin(dz / r);
double ra = std::atan2(dy, dx);
if (ra < 0) ra += 2 * M_PI;
// Compute offsets from the center of the sky patch
double ra_offset = ra - center_ra_rad;
double dec_offset = dec - center_dec_rad;
// Adjust RA offset for wrapping
if (ra_offset > M_PI) ra_offset -= 2 * M_PI;
if (ra_offset < -M_PI) ra_offset += 2 * M_PI;
// Check if within the defined sky patch
bool within_sky_patch = (std::abs(ra_offset) <= angular_width_rad / 2) &&
(std::abs(dec_offset) <= angular_height_rad / 2);
// Map RA/Dec to texture coordinates
double u = (ra_offset + angular_width_rad / 2) / angular_width_rad * texture_width;
double v = (dec_offset + angular_height_rad / 2) / angular_height_rad * texture_height;
pybind11::ssize_t u_idx = static_cast<pybind11::ssize_t>(u);
pybind11::ssize_t v_idx = static_cast<pybind11::ssize_t>(v);
// Clamp texture coordinates
u_idx = std::min(std::max(u_idx, pybind11::ssize_t(0)), texture_width - 1);
v_idx = std::min(std::max(v_idx, pybind11::ssize_t(0)), texture_height - 1);
// Background subtraction
double background_brightness = 0.0;
if (within_sky_patch)
{
background_brightness = texture_mutable(v_idx, u_idx);
}
if (perform_background_subtraction)
{
brightness -= background_brightness;
if (brightness <= 0)
continue; // Skip if adjusted brightness is zero or negative
}
// Update celestial sphere texture if needed
if (update_celestial_sphere && within_sky_patch)
{
#pragma omp atomic
texture_mutable(v_idx, u_idx) += brightness;
}
// If we have a voxel grid, cast rays into it and update voxel brightness
if (voxel_grid_provided)
{
// Safe to use voxel_grid_mutable_ptr now because voxel_grid_provided is true
auto &voxel_grid_mutable = *voxel_grid_mutable_ptr; // Reference to the voxel grid
// Ray casting into voxel grid
double step_size = max_distance / num_steps;
Vec3 ray_origin = {(float)earth_position[0], (float)earth_position[1], (float)earth_position[2] };
Vec3 ray_direction = {(float)direction_world[0], (float)direction_world[1], (float)direction_world[2] };
Vec3 box_min = {(float)x_min, (float)y_min, (float)z_min };
Vec3 box_max = {(float)x_max, (float)y_max, (float)z_max };
float t_entry, t_exit;
if (ray_aabb_intersection(ray_origin, ray_direction, box_min, box_max, t_entry, t_exit))
{
t_entry = std::max(t_entry, 0.0f);
t_exit = std::min(t_exit, (float)max_distance);
if (t_entry <= t_exit)
{
int s_entry = static_cast<int>(t_entry / step_size);
int s_exit = static_cast<int>(t_exit / step_size);
for (int s = s_entry; s <= s_exit; ++s)
{
double d = s * step_size;
double px = ray_origin.x + d * ray_direction.x;
double py = ray_origin.y + d * ray_direction.y;
double pz = ray_origin.z + d * ray_direction.z;
auto indices = point_to_voxel_indices({ px, py, pz }, voxel_grid_extent, voxel_grid_size);
pybind11::ssize_t x_idx = std::get<0>(indices);
pybind11::ssize_t y_idx = std::get<1>(indices);
pybind11::ssize_t z_idx = std::get<2>(indices);
if (x_idx >= 0)
{
#pragma omp atomic
voxel_grid_mutable(x_idx, y_idx, z_idx) += brightness;
}
}
}
}
}
}
}
}
}
//----------------------------------------------
// 6) Voxel DDA
//----------------------------------------------
struct RayStep {
int ix, iy, iz;
int step_count;
float distance;
};
static inline float safe_div(float num, float den) {
float eps = 1e-12f;
if(std::fabs(den) < eps) {
return std::numeric_limits<float>::infinity();
}
return num / den;
}
std::vector<RayStep> cast_ray_into_grid(
const Vec3 &camera_pos,
const Vec3 &dir_normalized,
int N,
float voxel_size,
const Vec3 &grid_center)
{
std::vector<RayStep> steps;
steps.reserve(64);
float half_size = 0.5f * (N * voxel_size);
Vec3 grid_min = { grid_center.x - half_size,
grid_center.y - half_size,
grid_center.z - half_size };
Vec3 grid_max = { grid_center.x + half_size,
grid_center.y + half_size,
grid_center.z + half_size };
float t_min = 0.f;
float t_max = std::numeric_limits<float>::infinity();
// 1) Ray-box intersection
for(int i=0; i<3; i++){
float origin = (i==0)? camera_pos.x : ((i==1)? camera_pos.y : camera_pos.z);
float d = (i==0)? dir_normalized.x : ((i==1)? dir_normalized.y : dir_normalized.z);
float mn = (i==0)? grid_min.x : ((i==1)? grid_min.y : grid_min.z);
float mx = (i==0)? grid_max.x : ((i==1)? grid_max.y : grid_max.z);
if(std::fabs(d) < 1e-12f){
if(origin < mn || origin > mx){
return steps; // no intersection
}
} else {
float t1 = (mn - origin)/d;
float t2 = (mx - origin)/d;
float t_near = std::fmin(t1, t2);
float t_far = std::fmax(t1, t2);
if(t_near > t_min) t_min = t_near;
if(t_far < t_max) t_max = t_far;
if(t_min > t_max){
return steps;
}
}
}
if(t_min < 0.f) t_min = 0.f;
// 2) Start voxel
Vec3 start_world = { camera_pos.x + t_min*dir_normalized.x,
camera_pos.y + t_min*dir_normalized.y,
camera_pos.z + t_min*dir_normalized.z };
float fx = (start_world.x - grid_min.x)/voxel_size;
float fy = (start_world.y - grid_min.y)/voxel_size;
float fz = (start_world.z - grid_min.z)/voxel_size;
int ix = int(fx);
int iy = int(fy);
int iz = int(fz);
if(ix<0 || ix>=N || iy<0 || iy>=N || iz<0 || iz>=N) {
return steps;
}
// 3) Step direction
int step_x = (dir_normalized.x >= 0.f)? 1 : -1;
int step_y = (dir_normalized.y >= 0.f)? 1 : -1;
int step_z = (dir_normalized.z >= 0.f)? 1 : -1;
auto boundary_in_world_x = [&](int i_x){ return grid_min.x + i_x*voxel_size; };
auto boundary_in_world_y = [&](int i_y){ return grid_min.y + i_y*voxel_size; };
auto boundary_in_world_z = [&](int i_z){ return grid_min.z + i_z*voxel_size; };
int nx_x = ix + (step_x>0?1:0);
int nx_y = iy + (step_y>0?1:0);
int nx_z = iz + (step_z>0?1:0);
float next_bx = boundary_in_world_x(nx_x);
float next_by = boundary_in_world_y(nx_y);
float next_bz = boundary_in_world_z(nx_z);
float t_max_x = safe_div(next_bx - camera_pos.x, dir_normalized.x);
float t_max_y = safe_div(next_by - camera_pos.y, dir_normalized.y);
float t_max_z = safe_div(next_bz - camera_pos.z, dir_normalized.z);
float t_delta_x = safe_div(voxel_size, std::fabs(dir_normalized.x));
float t_delta_y = safe_div(voxel_size, std::fabs(dir_normalized.y));
float t_delta_z = safe_div(voxel_size, std::fabs(dir_normalized.z));
float t_current = t_min;
int step_count = 0;
// 4) Walk
while(t_current <= t_max){
RayStep rs;
rs.ix = ix;
rs.iy = iy;
rs.iz = iz;
rs.step_count = step_count;
rs.distance = t_current;
steps.push_back(rs);
if(t_max_x < t_max_y && t_max_x < t_max_z){
ix += step_x;
t_current = t_max_x;
t_max_x += t_delta_x;
} else if(t_max_y < t_max_z){
iy += step_y;
t_current = t_max_y;
t_max_y += t_delta_y;
} else {
iz += step_z;
t_current = t_max_z;
t_max_z += t_delta_z;
}
step_count++;
if(ix<0 || ix>=N || iy<0 || iy>=N || iz<0 || iz>=N){
break;
}
}
return steps;
}
void process_motion(
const std::string &metadata_path,
const std::string &images_folder,
const std::string &output_bin,
int N,
float voxel_size,
const Vec3 &grid_center,
float motion_threshold,
float alpha
)
{
//------------------------------------------
// 7.1) Load metadata
//------------------------------------------
std::vector<FrameInfo> frames = load_metadata(metadata_path);
if(frames.empty()) {
std::cerr << "No frames loaded.\n";
return;
}
// Group by camera_index
// map< camera_index, vector<FrameInfo> >
std::map<int, std::vector<FrameInfo>> frames_by_cam;
for(const auto &f : frames) {
frames_by_cam[f.camera_index].push_back(f);
}
// Sort each by frame_index
for(auto &kv : frames_by_cam) {
auto &v = kv.second;
std::sort(v.begin(), v.end(), [](auto &a, auto &b){
return a.frame_index < b.frame_index;
});
}
//------------------------------------------
// 7.2) Create a 3D voxel grid
//------------------------------------------
std::vector<float> voxel_grid(N*N*N, 0.f);
//------------------------------------------
// 7.3) For each camera, load consecutive frames, detect motion,
// and cast rays for changed pixels
//------------------------------------------
for(auto &kv : frames_by_cam) {
auto &cam_frames = kv.second;
if(cam_frames.size() < 2) {
// Need at least two frames to see motion
continue;
}
// We'll keep the previous image to compare
ImageGray prev_img;
bool prev_valid = false;
for(size_t i=0; i<cam_frames.size(); i++){
// Load current frame
FrameInfo curr_info = cam_frames[i];
std::string img_path = images_folder + "/" + curr_info.image_file;
ImageGray curr_img;
if(!load_image_gray(img_path, curr_img)) {
std::cerr << "Skipping frame due to load error.\n";
continue;
}
if(!prev_valid) {
// Just store it, and wait for next
prev_img = curr_img;
prev_valid = true;
continue;
}
// Now we have prev + curr => detect motion
MotionMask mm = detect_motion(prev_img, curr_img, motion_threshold);
// Use the "current" frame's camera info for ray-casting
Vec3 cam_pos = curr_info.camera_position;
Mat3 cam_rot = rotation_matrix_yaw_pitch_roll(curr_info.yaw, curr_info.pitch, curr_info.roll);
float fov_rad = deg2rad(curr_info.fov_degrees);
float focal_len = (mm.width*0.5f) / std::tan(fov_rad*0.5f);
// For each changed pixel, accumulate into the voxel grid
for(int v = 0; v < mm.height; v++){
for(int u = 0; u < mm.width; u++){
if(!mm.changed[v*mm.width + u]){
continue; // skip if no motion
}
// Pixel brightness from current or use mm.diff
float pix_val = mm.diff[v*mm.width + u];
if(pix_val < 1e-3f) {
continue;
}
// Build local camera direction
float x = (float(u) - 0.5f*mm.width);
float y = - (float(v) - 0.5f*mm.height);
float z = -focal_len;
Vec3 ray_cam = {x,y,z};
ray_cam = normalize(ray_cam);
// transform to world
Vec3 ray_world = mat3_mul_vec3(cam_rot, ray_cam);
ray_world = normalize(ray_world);
// DDA
std::vector<RayStep> steps = cast_ray_into_grid(
cam_pos, ray_world, N, voxel_size, grid_center
);
// Accumulate
for(const auto &rs : steps) {
float dist = rs.distance;
float attenuation = 1.f/(1.f + alpha*dist);
float val = pix_val * attenuation;
int idx = rs.ix*N*N + rs.iy*N + rs.iz;
voxel_grid[idx] += val;
}
}
}
// Move current -> previous
prev_img = curr_img;
}
}
//------------------------------------------
// 7.4) Save the voxel grid to .bin
//------------------------------------------
{
std::ofstream ofs(output_bin, std::ios::binary);
if(!ofs) {
std::cerr << "Cannot open output file: " << output_bin << "\n";
return;
}
// Write metadata (N, voxel_size)
ofs.write(reinterpret_cast<const char*>(&N), sizeof(int));
ofs.write(reinterpret_cast<const char*>(&voxel_size), sizeof(float));
// Write the data
ofs.write(reinterpret_cast<const char*>(voxel_grid.data()), voxel_grid.size()*sizeof(float));
ofs.close();
std::cout << "Saved voxel grid to " << output_bin << "\n";
}
}
// Expose the function to Python
PYBIND11_MODULE(process_image_cpp, m) {
m.doc() = "C++ implementation of the process_image function";
m.def("process_image_cpp", &process_image_cpp, "Process image and update voxel grid in C++",
py::arg("image"),
py::arg("earth_position"),
py::arg("pointing_direction"),
py::arg("fov"),
py::arg("image_width"),
py::arg("image_height"),
py::arg("voxel_grid"),
py::arg("voxel_grid_extent"),
py::arg("max_distance"),
py::arg("num_steps"),
py::arg("celestial_sphere_texture"),
py::arg("center_ra_rad"),
py::arg("center_dec_rad"),
py::arg("angular_width_rad"),
py::arg("angular_height_rad"),
py::arg("update_celestial_sphere"),
py::arg("perform_background_subtraction")
);
py::class_<Vec3>(m, "Vec3")
.def(py::init<float, float, float>())
.def_readwrite("x", &Vec3::x)
.def_readwrite("y", &Vec3::y)
.def_readwrite("z", &Vec3::z);
m.def("process_motion", &process_motion, "Process motion and create voxel grid",
py::arg("metadata_path"),
py::arg("images_folder"),
py::arg("output_bin"),
py::arg("N"),
py::arg("voxel_size"),
py::arg("grid_center"),
py::arg("motion_threshold"),
py::arg("alpha")
);
}