/*************************************************** * ray_voxel.cpp * * A "complete" C++ example: * 1) Parse metadata.json with nlohmann::json * 2) Load images (stb_image) in grayscale * 3) Do motion detection between consecutive frames * for each camera * 4) Cast rays (voxel DDA) for changed pixels * 5) Accumulate in a shared 3D voxel grid * 6) Save the voxel grid to a .bin file ***************************************************/ #include #include #include #include #include #include #include #include // External libraries for JSON & image loading #include "nlohmann/json.hpp" #define STB_IMAGE_IMPLEMENTATION #include "stb_image.h" // For convenience using json = nlohmann::json; //---------------------------------------------- // 1) Data Structures //---------------------------------------------- struct Vec3 { float x, y, z; }; struct Mat3 { float m[9]; }; struct FrameInfo { int camera_index; int frame_index; Vec3 camera_position; float yaw, pitch, roll; float fov_degrees; std::string image_file; // Optionally we store object_name, object_location if needed }; //---------------------------------------------- // 2) Basic Math Helpers //---------------------------------------------- static inline float deg2rad(float deg) { return deg * 3.14159265358979323846f / 180.0f; } static inline Vec3 normalize(const Vec3 &v) { float len = std::sqrt(v.x*v.x + v.y*v.y + v.z*v.z); if(len < 1e-12f) { return {0.f, 0.f, 0.f}; } return { v.x/len, v.y/len, v.z/len }; } // Multiply 3x3 matrix by Vec3 static inline Vec3 mat3_mul_vec3(const Mat3 &M, const Vec3 &v) { Vec3 r; r.x = M.m[0]*v.x + M.m[1]*v.y + M.m[2]*v.z; r.y = M.m[3]*v.x + M.m[4]*v.y + M.m[5]*v.z; r.z = M.m[6]*v.x + M.m[7]*v.y + M.m[8]*v.z; return r; } //---------------------------------------------- // 3) Euler -> Rotation Matrix //---------------------------------------------- Mat3 rotation_matrix_yaw_pitch_roll(float yaw_deg, float pitch_deg, float roll_deg) { float y = deg2rad(yaw_deg); float p = deg2rad(pitch_deg); float r = deg2rad(roll_deg); // Build each sub-rotation // Rz(yaw) float cy = std::cos(y), sy = std::sin(y); float Rz[9] = { cy, -sy, 0.f, sy, cy, 0.f, 0.f, 0.f, 1.f }; // Ry(roll) float cr = std::cos(r), sr = std::sin(r); float Ry[9] = { cr, 0.f, sr, 0.f, 1.f, 0.f, -sr, 0.f, cr }; // Rx(pitch) float cp = std::cos(p), sp = std::sin(p); float Rx[9] = { 1.f, 0.f, 0.f, 0.f, cp, -sp, 0.f, sp, cp }; // Helper to multiply 3x3 auto matmul3x3 = [&](const float A[9], const float B[9], float C[9]){ for(int row=0; row<3; ++row) { for(int col=0; col<3; ++col) { C[row*3+col] = A[row*3+0]*B[0*3+col] + A[row*3+1]*B[1*3+col] + A[row*3+2]*B[2*3+col]; } } }; float Rtemp[9], Rfinal[9]; matmul3x3(Rz, Ry, Rtemp); // Rz * Ry matmul3x3(Rtemp, Rx, Rfinal); // (Rz*Ry)*Rx Mat3 out; for(int i=0; i<9; i++){ out.m[i] = Rfinal[i]; } return out; } //---------------------------------------------- // 4) Load JSON Metadata //---------------------------------------------- std::vector load_metadata(const std::string &json_path) { std::vector frames; std::ifstream ifs(json_path); if(!ifs.is_open()){ std::cerr << "ERROR: Cannot open " << json_path << std::endl; return frames; } json j; ifs >> j; if(!j.is_array()){ std::cerr << "ERROR: JSON top level is not an array.\n"; return frames; } for(const auto &entry : j) { FrameInfo fi; fi.camera_index = entry.value("camera_index", 0); fi.frame_index = entry.value("frame_index", 0); fi.yaw = entry.value("yaw", 0.f); fi.pitch = entry.value("pitch", 0.f); fi.roll = entry.value("roll", 0.f); fi.fov_degrees = entry.value("fov_degrees", 60.f); fi.image_file = entry.value("image_file", ""); // camera_position array if(entry.contains("camera_position") && entry["camera_position"].is_array()){ auto arr = entry["camera_position"]; if(arr.size()>=3){ fi.camera_position.x = arr[0].get(); fi.camera_position.y = arr[1].get(); fi.camera_position.z = arr[2].get(); } } frames.push_back(fi); } return frames; } //---------------------------------------------- // 5) Image Loading (Gray) & Motion Detection //---------------------------------------------- struct ImageGray { int width; int height; std::vector pixels; // grayscale float }; #include // for std::mt19937, std::uniform_real_distribution // Load image in grayscale (0-255 float) and add uniform noise. bool load_image_gray(const std::string &img_path, ImageGray &out) { int w, h, channels; // stbi_load returns 8-bit data by default unsigned char* data = stbi_load(img_path.c_str(), &w, &h, &channels, 1); if (!data) { std::cerr << "Failed to load image: " << img_path << std::endl; return false; } out.width = w; out.height = h; out.pixels.resize(w * h); // Prepare random noise generator static std::random_device rd; static std::mt19937 gen(rd()); // Noise in [-3, +3] std::uniform_real_distribution noise_dist(-1.0f, 1.0f); // Copy pixels and add noise for (int i = 0; i < w * h; i++) { float val = static_cast(data[i]); // 0..255 // Add uniform noise val += noise_dist(gen); // Clamp to [0, 255] if (val < 0.0f) val = 0.0f; if (val > 255.0f) val = 255.0f; // Store in out.pixels out.pixels[i] = val; } stbi_image_free(data); return true; } // Detect motion by absolute difference // Returns a boolean mask + the difference for each pixel struct MotionMask { int width; int height; std::vector changed; std::vector diff; // absolute difference }; MotionMask detect_motion(const ImageGray &prev, const ImageGray &next, float threshold) { MotionMask mm; if(prev.width != next.width || prev.height != next.height) { std::cerr << "Images differ in size. Can't do motion detection!\n"; mm.width = 0; mm.height = 0; return mm; } mm.width = prev.width; mm.height = prev.height; mm.changed.resize(mm.width * mm.height, false); mm.diff.resize(mm.width * mm.height, 0.f); for(int i=0; i < mm.width*mm.height; i++){ float d = std::fabs(prev.pixels[i] - next.pixels[i]); mm.diff[i] = d; mm.changed[i] = (d > threshold); } return mm; } //---------------------------------------------- // 6) Voxel DDA //---------------------------------------------- struct RayStep { int ix, iy, iz; int step_count; float distance; }; static inline float safe_div(float num, float den) { float eps = 1e-12f; if(std::fabs(den) < eps) { return std::numeric_limits::infinity(); } return num / den; } std::vector cast_ray_into_grid( const Vec3 &camera_pos, const Vec3 &dir_normalized, int N, float voxel_size, const Vec3 &grid_center) { std::vector steps; steps.reserve(64); float half_size = 0.5f * (N * voxel_size); Vec3 grid_min = { grid_center.x - half_size, grid_center.y - half_size, grid_center.z - half_size }; Vec3 grid_max = { grid_center.x + half_size, grid_center.y + half_size, grid_center.z + half_size }; float t_min = 0.f; float t_max = std::numeric_limits::infinity(); // 1) Ray-box intersection for(int i=0; i<3; i++){ float origin = (i==0)? camera_pos.x : ((i==1)? camera_pos.y : camera_pos.z); float d = (i==0)? dir_normalized.x : ((i==1)? dir_normalized.y : dir_normalized.z); float mn = (i==0)? grid_min.x : ((i==1)? grid_min.y : grid_min.z); float mx = (i==0)? grid_max.x : ((i==1)? grid_max.y : grid_max.z); if(std::fabs(d) < 1e-12f){ if(origin < mn || origin > mx){ return steps; // no intersection } } else { float t1 = (mn - origin)/d; float t2 = (mx - origin)/d; float t_near = std::fmin(t1, t2); float t_far = std::fmax(t1, t2); if(t_near > t_min) t_min = t_near; if(t_far < t_max) t_max = t_far; if(t_min > t_max){ return steps; } } } if(t_min < 0.f) t_min = 0.f; // 2) Start voxel Vec3 start_world = { camera_pos.x + t_min*dir_normalized.x, camera_pos.y + t_min*dir_normalized.y, camera_pos.z + t_min*dir_normalized.z }; float fx = (start_world.x - grid_min.x)/voxel_size; float fy = (start_world.y - grid_min.y)/voxel_size; float fz = (start_world.z - grid_min.z)/voxel_size; int ix = int(fx); int iy = int(fy); int iz = int(fz); if(ix<0 || ix>=N || iy<0 || iy>=N || iz<0 || iz>=N) { return steps; } // 3) Step direction int step_x = (dir_normalized.x >= 0.f)? 1 : -1; int step_y = (dir_normalized.y >= 0.f)? 1 : -1; int step_z = (dir_normalized.z >= 0.f)? 1 : -1; auto boundary_in_world_x = [&](int i_x){ return grid_min.x + i_x*voxel_size; }; auto boundary_in_world_y = [&](int i_y){ return grid_min.y + i_y*voxel_size; }; auto boundary_in_world_z = [&](int i_z){ return grid_min.z + i_z*voxel_size; }; int nx_x = ix + (step_x>0?1:0); int nx_y = iy + (step_y>0?1:0); int nx_z = iz + (step_z>0?1:0); float next_bx = boundary_in_world_x(nx_x); float next_by = boundary_in_world_y(nx_y); float next_bz = boundary_in_world_z(nx_z); float t_max_x = safe_div(next_bx - camera_pos.x, dir_normalized.x); float t_max_y = safe_div(next_by - camera_pos.y, dir_normalized.y); float t_max_z = safe_div(next_bz - camera_pos.z, dir_normalized.z); float t_delta_x = safe_div(voxel_size, std::fabs(dir_normalized.x)); float t_delta_y = safe_div(voxel_size, std::fabs(dir_normalized.y)); float t_delta_z = safe_div(voxel_size, std::fabs(dir_normalized.z)); float t_current = t_min; int step_count = 0; // 4) Walk while(t_current <= t_max){ RayStep rs; rs.ix = ix; rs.iy = iy; rs.iz = iz; rs.step_count = step_count; rs.distance = t_current; steps.push_back(rs); if(t_max_x < t_max_y && t_max_x < t_max_z){ ix += step_x; t_current = t_max_x; t_max_x += t_delta_x; } else if(t_max_y < t_max_z){ iy += step_y; t_current = t_max_y; t_max_y += t_delta_y; } else { iz += step_z; t_current = t_max_z; t_max_z += t_delta_z; } step_count++; if(ix<0 || ix>=N || iy<0 || iy>=N || iz<0 || iz>=N){ break; } } return steps; } //---------------------------------------------- // 7) Main Pipeline //---------------------------------------------- int main(int argc, char** argv) { if(argc < 4) { std::cerr << "Usage: " << argv[0] << " \n"; return 1; } std::string metadata_path = argv[1]; std::string images_folder = argv[2]; std::string output_bin = argv[3]; //------------------------------------------ // 7.1) Load metadata //------------------------------------------ std::vector frames = load_metadata(metadata_path); if(frames.empty()) { std::cerr << "No frames loaded.\n"; return 1; } // Group by camera_index // map< camera_index, vector > std::map> frames_by_cam; for(const auto &f : frames) { frames_by_cam[f.camera_index].push_back(f); } // Sort each by frame_index for(auto &kv : frames_by_cam) { auto &v = kv.second; std::sort(v.begin(), v.end(), [](auto &a, auto &b){ return a.frame_index < b.frame_index; }); } //------------------------------------------ // 7.2) Create a 3D voxel grid //------------------------------------------ const int N = 500; const float voxel_size = 6.f; // Hard-coded center (like your Python example): Vec3 grid_center = {-0.f, 0.f, 500.f}; // Vec3 grid_center = {-0.f, 0.f, 200.f}; // For birds std::vector voxel_grid(N*N*N, 0.f); //------------------------------------------ // 7.3) For each camera, load consecutive frames, detect motion, // and cast rays for changed pixels //------------------------------------------ // Basic parameters float motion_threshold = 2.0f; // difference threshold float alpha = 0.1f; // distance-based attenuation factor for(auto &kv : frames_by_cam) { int cam_id = kv.first; auto &cam_frames = kv.second; if(cam_frames.size() < 2) { // Need at least two frames to see motion continue; } // We'll keep the previous image to compare ImageGray prev_img; bool prev_valid = false; FrameInfo prev_info; for(size_t i=0; i detect motion MotionMask mm = detect_motion(prev_img, curr_img, motion_threshold); // Use the "current" frame's camera info for ray-casting // (adjust if you prefer the previous frame's camera) Vec3 cam_pos = curr_info.camera_position; Mat3 cam_rot = rotation_matrix_yaw_pitch_roll(curr_info.yaw, curr_info.pitch, curr_info.roll); float fov_rad = deg2rad(curr_info.fov_degrees); float focal_len = (mm.width*0.5f) / std::tan(fov_rad*0.5f); // For each changed pixel, accumulate into the voxel grid for(int v = 0; v < mm.height; v++){ for(int u = 0; u < mm.width; u++){ if(!mm.changed[v*mm.width + u]){ continue; // skip if no motion } // Pixel brightness from current or use mm.diff float pix_val = mm.diff[v*mm.width + u]; if(pix_val < 1e-3f) { continue; } // Build local camera direction float x = (float(u) - 0.5f*mm.width); float y = - (float(v) - 0.5f*mm.height); float z = -focal_len; Vec3 ray_cam = {x,y,z}; ray_cam = normalize(ray_cam); // transform to world Vec3 ray_world = mat3_mul_vec3(cam_rot, ray_cam); ray_world = normalize(ray_world); // DDA std::vector steps = cast_ray_into_grid( cam_pos, ray_world, N, voxel_size, grid_center ); // Accumulate for(const auto &rs : steps) { float dist = rs.distance; float attenuation = 1.f/(1.f + alpha*dist); float val = pix_val * 1.f; //attenuation, need to fix this to work better so that it scales with the size of the image as it would appear at that distance but for now this works; int idx = rs.ix*N*N + rs.iy*N + rs.iz; voxel_grid[idx] += val; } } } // Move current -> previous prev_img = curr_img; prev_info = curr_info; } } //------------------------------------------ // 7.4) Save the voxel grid to .bin //------------------------------------------ { std::ofstream ofs(output_bin, std::ios::binary); if(!ofs) { std::cerr << "Cannot open output file: " << output_bin << "\n"; return 1; } // Write metadata (N, voxel_size) ofs.write(reinterpret_cast(&N), sizeof(int)); ofs.write(reinterpret_cast(&voxel_size), sizeof(float)); // Write the data ofs.write(reinterpret_cast(voxel_grid.data()), voxel_grid.size()*sizeof(float)); ofs.close(); std::cout << "Saved voxel grid to " << output_bin << "\n"; } return 0; }